


Class - 9th - Science Chapter -

#### 7 - Motion Notes

#### Rest

A body is said to be at rest, if it does not change its position with respect to time / to the observer

Example - A Chair lying on floor, A book kept on the table, etc.

#### Motion

A body is said to be in motion if it changes its position with respect to time / observer

Example - A car moving on the road, Kite flying in air etc.

# Types of motion

- 1. Uniform motion
- 2. Non uniform motion

#### Uniform motion

When a body covers equal distances in equal intervals of time is called uniform motion

#### Non-Uniform motion

When a body covers unequal distances in equal intervals of time is called non-uniform motion

## Scalar quantity

Such physical quantity which has only magnitude is called scalar quantity

Example - Distance, Volume, Mass, Work, etc.

#### Vector quantity

Such physical quantity which has both magnitude and direction is called vector quantity

Example - Displacement, Velocity, Acceleration, etc.

## Some important physical quantity

- 1. Distance
- 2. Displacement
- 3. Speed
- 4. Velocity
- 5. Acceleration

#### Distance

- It is the total path length covered by a body
- It is a scalar quantity
- Distance travelled by a body is always positive
- It cannot be zero for a moving body

#### **Displacement**

- It is the shortest distance between initial and final position of the body.
- It is vector quantity.
- Displacement of body may be positive or negative or zero .

#### Speed

- The distance covered by a body per unit time is called speed.
- Speed is a scalar quantity.
- Speed = distance travelled / Time
- v = s/t
- S.I unit = meter / second
- C.G.S unit = centimeter / second

#### **Uniform Speed**

When a body covered equal distance in equal intervals of time, howsoever small the time interval may be, then the body is said possess uniform speed.

## Non-uniform speed

When a body covered unequal distance in equal time interval, then it is said to possess non-uniform speed.

#### Average speed

Average speed is the total distance travelled by the body divided by the total time taken.

Average speed = Total distance travelled / Total time taken

#### Velocity

The distance travelled by a body per unit time in a specified direction is called velocity.

Velocity is a vector quantity.

Velocity = Displacement / time taken

(v) = s/t

## Uniform Velocity

A body is said to be moving with uniform velocity if ii moves along a fixed direction and covers equal distances in equal intervals of time, however small these intervals of time may be.

#### Non-uniform Velocity/Variable velocity

A body is said to be moving with variable velocity if:

- 1. its speed change but direction does not change.
- 2. its speed remains the same, but direction of motion change, or
- 3. both its speed and direction of motion change.

Examples of non-uniform velocity:

- 1. A stone thrown vertically upwards.
- 2. A stone dropped from a height.
- 3. A car moving towards east on a crowded road.

#### Average velocity

Average velocity is that velocity with which a body would cover the same distance along a particular direction (same displacement) in the same time.

Average velocity(V) = Displacement/Total time taken = S/T

#### Acceleration:

The rate of change of velocity of a body is called acceleration.

Acceleration= Change in velocity/Time taken for change

Acceleration= V-U/T

The S.I. Unit of acceleration is MS<sup>-2</sup>.

#### Retardation:

The negative acceleration is also called retardation.

#### Equation of motion:

The equation which correlate initial velocity (u), final velocity(v), acceleration(a), time taken(t) and displacement(s) of a body for an activity in which a body has uniform acceleration are called equations of motion.

(1) First equation of motion: We know that acceleration is change in velocity per unit time.

$$a = v-u/t : at = v-u$$

$$\therefore V = u + at \qquad \dots$$

(2) Second equation of motion : We know that Average velocity = Initial velocity + Final velocity / 2

$$V_{av=u+v/2}$$

Then, distance covered (s) = Average velocity \* Time

$$\therefore$$
 s = u + v/2 \*t

But 
$$v = u + at$$

[ First equation of motion ]

$$\therefore$$
 s = [u+(u+at)] \* t/2 = 2ut + at<sup>2</sup> /2

or 
$$S = u t + 1/2 at^2$$
 ... (II)

(3) Third equation of motion : We know that Average velocity = v + u/2

Distance covered (s) = Average velocity \* Time

$$\therefore$$
 s = (v + u/2)

But 
$$v = u + at$$

$$\therefore t = v-u/a \qquad \dots \text{(III)}$$

$$\therefore s = (v-u/2) * (v-u/a)$$
or  $V^2 - U^2 = 2as \qquad \dots \text{(IV)}$ 

# Class - 9th - Science Chapter - 7 - Motion Notes

WRITTEN BY - SHEELU YADAV & POOJA SHARMA = 9871217997

TYPIST - SHIVAM TIWARI

**READ MORE**